

TYPE 2 DIABETES AND DIABETIC KIDNEY DISEASE

It is predicted that **5 million** people in the UK will have type 2 diabetes (T2DM) by 2025¹

Chronic Kidney Disease (CKD) refers to kidney disease of any aetiology, including non-diabetes related causes

Diabetic nephropathy or diabetic kidney disease (DKD) is characterised by gradually increasing urine albumin excretion over many years²

50% of people with diabetes will develop chronic kidney disease, between **20 to 40%** of these people have diabetic kidney disease³

Patients with DKD have **exceptionally high rates** of cardiovascular morbidity and mortality and are more likely to die from CVD than progress to ESRD⁴

Kidney failure in people with T2DM in the UK costs an estimated £379 million (2010-11). This cost is expected to rise to £635 million by 2036-65

The care of people with T2DM and DKD encompasses:

- · Glycaemic, blood pressure and lipid management
- Lifestyle and physical activity, smoking cessation, the renal and diabetes diet, regular foot assessment, and aspirin to reduce cardiovascular risk⁶

The diagnosis of stages of DKD are assessed using 2 methods: eGFR and urinary albumin creatinine ratio (UACR)

The measurement of UACR can add to the evidence base when considering if the individual has developed kidney disease as a result of their T2DM or not

UACR detects damage earlier than eGFR. Albuminuria occurs gradually over many years, in conjunction with slowly rising blood pressure and declining eGFR.

38% of patients with T2DM haven't had a UACR test within the last year^{7,8}

Napp has paid Trend Diabetes to deliver this educational resource for healthcare professionals. This document was fully funded and organised by Napp Pharmaceuticals Limited in partnership with Trend Diabetes.

CLASSIFICATION

Prognosis of CKD by GFR and albuminuria categories8:				Normal to mildly increased	Moderately increased	Severely increased
				<30 mg/g <3 mg/mmol	30-300 mg/g 3-30 mg/mmol	>300 mg/g >30 mg/mmol
GFR categories (mL/min/1,72 m²) Description and range	G1	Normal or high	≥90	Low risk	Increased risk	High risk
	G2	Mildly decreased	60-89	Low risk	Increased risk	High risk
	G3a	Mildly to moderately decreased	45- 59	Increased risk	High risk	Very high risk
	G3b	Moderately to severely decreased	30- 44	High risk	Very high risk	Very high risk
	G4	Severely decreased	15-29	Very high risk	Very high risk	Very high risk
	G5	Kidney failure	<15	Very high risk	Very high risk	Very high risk

When reviewing this table consider: An individual with G1-A3 has the same same risk as G3b-A1 so eGFR alone will not detect kidney damage early therefore it is vital that eGFR and UACR are completed.

IMPORTANT ISSUES RELATING TO TESTS

eGFR

- Blood test as part of U&Es
- Report depends on assay (Result should show actual number not just > 60 ml/min)
- Person needs to be well hydrated
- Advise low protein meal night before test

UACR

- Early morning urine sample if no sample is brought a random can be used for the initial assessment. If sample shows a raised UACR repeat as for early morning
- Before any activity (including sex)
- No indication of infection (Check prior to sending to lab)

THE SIGNIFICANCE OF UACR AND EGFR:

- Increased UACR is associated with increased adverse outcomes
- Decreased eGFR is associated with an increased risk of adversed outcomes
- **↑** Increased UACR and decreased eGFR multiplies the risk of adverse outcomes
- The UACR should be tested annually and more often depending on latest eGFR and UACR

A CAUTION!

The eGFR equation is only an estimate & is **not** accurate for use in:

- Children
- Oedematous states
- Acute renal failure
- **Amputees**
- Pregnancy
- Malnourished patients For adults 90% of GFRs estimated by change to Modification of Diet in Renal Disease are accurate to within 30% of true value9.10
- Muscle wasting disease states (N.B. reduced muscle mass will lead to overestimation and increased muscle mass to underestimation of the GFR)

POTENTIAL CAUSES OF CHRONIC KIDNEY DISEASE¹¹

Persistent albuminuria categories - Description and range

A2

А3

- Type 1 or type 2 diabetes
- Recurrent urine infection
- > Hypertension

Α1

- > Interstitial nephritis
- > Glomerulonephritis
- Autosomal dominant polycystic kidney disease (ADPKD)
- Prolonged obstruction of the urinary tract, from conditions such as enlarged prostate, kidney stones and some cancers
- Vesicoureteral reflux, where urine is forced backed into the kidneys when the bladder contracts
- Prolonged use of specific medications including non steroidal anti-inflammatory agents (NSAIDs) calcineurin inhibitors, lithium and, NSAIDs

REFERENCES

- Diabetes UK (2020) Facts and Figures https://www.diabetes.org.uk/professionals/position-statements-reports/statistics
- Marshall S and Flyvberg A in Holt et al (2017) Textbook of diabetes 5th Ed Chapter 39 Wiley: London
- Yang et al (2019) A differential diagnosis model for diabetic nephropathy and non-diabetic renal disease in patients with type 2 diabetes. Diabetes metabolic Syndrome, 12:1963-1972. Pálsson R & Patel UD. Adv Chronic Kídney Dís. 2014;21:273-80.
- Hex N et al Diabet Med 2012;29:855-62. National Institute for Health and Clinical Excellence, NICE CG 182. Chronic Kidney disease in adults: assessment and management. https://www.nice. org.uk/guidance/CG182/chapter/introduction (Accessed 13/06/19)
- National Diabetes Audit. Report: Care Processes and Treatment Targets, January to December 2019 (Accessed June 2020). https://digital.nhs.uk/data-and-information/publications/statistical/national-diabetes-audit/national-diabetes-audit-quarterly-
- report-january-todecember-2019. Adapted from KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease (2013) 3, 128–133.
 The Renal Association,(https://renal.org/information-resources/the-uk-eckd-guide/
- about-egfr/ accessed on Oct 2019)
- https://www.kidney.org/professionals/KDOQI/gfr_calculatorPed
 Mayo clinic (2019)Chronic Kidney disease. https://www.mayoclinic.org/diseasesconditions/chronic-kidney-disease/symptoms-causes/syc-20354521 Accessed